点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:y39彩票骗局-y39彩票官方网站
首页>文化频道>要闻>正文

y39彩票骗局-y39彩票官方网站

来源:y39彩票平台2024-02-14 17:48

  

2022年CPI同比上涨2.0% 2023年物价会如何?******

  中新网1月12日电(中新财经记者 谢艺观)12日,国家统计局公布2022年全年及12月份CPI数据。受鲜菜价格降幅收窄、鲜果价格涨幅扩大等因素影响,2022年12月份CPI同比上涨1.8%。另,2022年全年CPI同比上涨2.0%。

CPI涨跌幅走势图。来自国家统计局。

  2022年12月CPI同比涨幅小幅扩大

  国家统计局数据显示,从同比看,2022年12月CPI上涨1.8%,涨幅比前月扩大0.2个百分点。其中,食品价格上涨4.8%,涨幅比前月扩大1.1个百分点,影响CPI上涨约0.87个百分点;非食品价格上涨1.1%,涨幅与前月相同,影响CPI上涨约0.92个百分点。

  据国家统计局城市司首席统计师董莉娟介绍,食品中,猪肉价格上涨22.2%,涨幅比前月回落12.2个百分点;薯类和鲜果价格分别上涨12.7%和11.0%,涨幅均有扩大;鸡蛋、食用油和粮食价格分别上涨10.0%、7.2%和2.6%,涨幅均有回落;鲜菜价格下降8.0%,降幅收窄13.2个百分点。

  “扣除食品和能源价格的核心CPI略有回升,同比上涨0.7%,涨幅比前月扩大0.1个百分点。”董莉娟指出。

资料图:新疆乌鲁木齐市某购物中心。 中新社记者 刘新 摄

  鲜菜、鲜果价格环比上涨,猪肉价格降幅扩大

  从环比看,2022年12月CPI由前月下降0.2%转为持平。其中,食品价格由前月下降0.8%转为上涨0.5%,影响CPI上涨约0.09个百分点。

  董莉娟提到,食品中,受季节性因素影响,鲜菜和鲜果价格分别上涨7.0%和4.7%;生猪供给持续增加,猪肉价格下降8.7%,降幅比前月扩大8.0个百分点。

  “鲜菜、鲜果价格环比大涨,是食品价格反弹的最重要因素,主要原因是冬季供给偏弱,以及2023年春节移至1月引发的节日性上涨效应提前。”民生银行首席经济学家温彬表示。

资料图:海口市民在农贸市场购买肉类。 张月和 摄资料图:海口市民在农贸市场购物。 张月和 摄

  2022年CPI涨幅处在预期目标内

  国家统计局公布信息显示,2022年全年CPI同比上涨2.0%,处在3%左右的预期目标内。

  国家发改委价格司司长万劲松12日在发布会上表示,我国物价总水平持续平稳运行,国内CPI单月涨幅始终运行在3%以下,全年上涨2%,大幅低于美国8%左右、欧元区8%以上、英国9%左右等发达经济体涨幅,也明显低于印度、巴西、南非等新兴经济体7%—10%(1—11月份)的涨幅。国际胀、国内稳,对比十分鲜明。

  “2022年,面对40年以来全球出现的最大通胀压力,我国通过保持定力的财政货币政策、及时有效的疫情防控措施、完善的工业生产体系以及相对安全的能源粮食保障,始终保持着相对温和的通胀水平。”温彬称。

9月15日,成都市锦江区,民众在大型超市内购物。 中新社记者 刘忠俊 摄资料图:成都市锦江区,民众在大型超市内购物。 中新社记者 刘忠俊 摄

  今年CPI走势会如何?

  2022年,国内物价保持平稳的运行态势,2023年物价会否出现明显波动?

  万劲松表示,2023年,尽管国际大宗商品价格可能高位波动,输入性通胀压力仍然存在,但我国物价保持平稳运行具有坚实基础。“粮食生产连续丰收,生猪产能合理充裕,重要民生商品供应充足,基础能源保障有力,保供稳价体系进一步健全,完全有信心、有能力继续保持物价总体稳定。”

  “2023年,我国CPI预计将继续保持温和水平。”温彬认为,综合来看,2023年外部通胀压力减轻,食品价格保持温和和相对较低的翘尾因素将限制CPI的涨幅,但随着疫情防控措施优化,我国内需开启复苏进程,将推升核心CPI的修复,并主导CPI中枢的回升。预计2023年全年CPI同比上涨2.1%,略高于2022年的水平。(完)

                                        • y39彩票骗局

                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

                                            相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

                                            你或身边人正在用的某些药物,很有可能就来自他们的贡献。

                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                            2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

                                            一、夏普莱斯:两次获得诺贝尔化学奖

                                            2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

                                            今年,他第二次获奖的「点击化学」,同样与药物合成有关。

                                            1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                            过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

                                            虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

                                            虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

                                            有机催化是一个复杂的过程,涉及到诸多的步骤。

                                            任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

                                            不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

                                            为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

                                            点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

                                            点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

                                            夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

                                            大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

                                            大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

                                            大自然的一些催化过程,人类几乎是不可能完成的。

                                            一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

                                             夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

                                            大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

                                            在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

                                            其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

                                            诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                            夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

                                            他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

                                            「点击化学」的工作,建立在严格的实验标准上:

                                            反应必须是模块化,应用范围广泛

                                            具有非常高的产量

                                            仅生成无害的副产品

                                            反应有很强的立体选择性

                                            反应条件简单(理想情况下,应该对氧气和水不敏感)

                                            原料和试剂易于获得

                                            不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

                                            可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

                                            反应需高热力学驱动力(>84kJ/mol)

                                            符合原子经济

                                            夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

                                            他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

                                            二、梅尔达尔:筛选可用药物

                                            夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

                                            他就是莫滕·梅尔达尔。

                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                            梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

                                            为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

                                            他日积月累地不断筛选,意图筛选出可用的药物。

                                            在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

                                            三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

                                            2002年,梅尔达尔发表了相关论文。

                                            夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                            三、贝尔托齐西:把点击化学运用在人体内

                                            不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                            虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

                                            诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

                                            她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

                                            这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

                                            卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

                                            20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

                                            然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

                                            当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

                                            后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

                                            由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

                                            经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

                                            巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

                                            虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

                                            就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

                                            她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

                                            大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                            2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                            贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

                                            在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

                                            目前该药物正在晚期癌症病人身上进行临床试验。

                                            不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

                                          「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

                                            参考

                                            https://www.nobelprize.org/prizes/chemistry/2001/press-release/

                                            Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

                                            Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

                                            Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

                                            https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

                                            https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

                                            Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

                                            (文图:赵筱尘 巫邓炎)

                                          [责编:天天中]
                                          阅读剩余全文(

                                          相关阅读

                                          推荐阅读
                                          y39彩票投注印度捷特航空因债务危机全面停飞
                                          2024-01-05
                                          y39彩票官网网址【河北】石家庄:叙利亚古代文物精品展受关注
                                          2023-11-27
                                          y39彩票计划上海民校为何受“热捧”?
                                          2024-08-12
                                          y39彩票娱乐 全新一代奥迪Q3 全方位升级
                                          2024-02-29
                                          y39彩票app下载0元读365本书,100天和同龄人拉开差距
                                          2024-06-08
                                          y39彩票代理必知的曾国藩24个人生智慧
                                          2023-12-31
                                          y39彩票注册网 复盘世休大会后的杭州 或许是平谷未来的样子
                                          2024-01-12
                                          y39彩票手机版5月:社保费率降低 携宠物入境有新规
                                          2024-03-03
                                          y39彩票走势图杜兰特:哈登不仅靠罚球 他绝招还有后撤步三分
                                          2024-06-22
                                          y39彩票网投女学生被外教遗弃19年后携子闹场?上戏回应
                                          2023-12-20
                                          y39彩票论坛雍正杀子疑云:雍正为什么要将自己的亲儿子弘时削籍害死?
                                          2024-03-02
                                          y39彩票下载 在格力电器赢了雷军十亿赌局之后,董明珠下一站是银隆?
                                          2023-12-04
                                          y39彩票手机版APP劫匪开皮卡撞破大门 盗取ATM机后扬长而去
                                          2024-03-02
                                          y39彩票登录组图:杉咲花发INS 晒与黑岛结菜共游夏威夷写真
                                          2024-04-22
                                          y39彩票计划群 淘宝来了,线下批发店就死了
                                          2024-04-05
                                          y39彩票客户端下载 塞弗洛萨试水自由市场 前防守二阵球员恐难留爵士
                                          2024-10-04
                                          y39彩票漏洞6路信号想看什么全都有!大师赛第三轮直播回放合集
                                          2024-04-13
                                          y39彩票玩法专家教你高考怎么报志愿
                                          2023-12-30
                                          y39彩票登录《创新创业创造云讲堂》第三讲
                                          2024-10-09
                                          y39彩票注册便宜V6后驱绝迹?锐志将彻底停产
                                          2024-02-22
                                          y39彩票官方【每日一习话】完善农村留守儿童、妇女、老年人关爱服务体系
                                          2024-06-04
                                          y39彩票邀请码世园会创意视频:园-圆
                                          2024-03-11
                                          y39彩票开户沈北新区聚力打造优质营商环境
                                          2024-07-03
                                          y39彩票赔率涉案2.3亿 《流浪地球》等8部电影被盗版案告破
                                          2024-06-20
                                          加载更多
                                          y39彩票地图